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Abstract
We consider the generalized Lamé equation
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)f = 0

with A = α + βk−2
1 , B = γ k−2

2 + δk−2
1 + λ. By introducing a generalization

of Jacobi’s elliptic functions, we transform this equation to a Schrödinger
equation with (quasi-doubly) periodic potential. We show that only for a finite
set of integral values for the parameters (α, β, γ, δ, λ) quasi-doubly periodic
eigenfunctions expressible in terms of generalized Jacobi functions exist. For
this purpose we also establish a relation to the generalized Ince equation.

PACS numbers: 02.30.Gp, 02.30.Hq, 03.65.Ge

1. Introduction

It is well known [1–3] that the Lamé equation (in the Jacobian form)

d2f

dz2
− n(n + 1)k2 sn2(z, k)f = −Ef (1.1)

for given n ∈ N has 2n + 1 doubly periodic eigenfunctions which can be expressed as
polynomials in Jacobi elliptic functions sn(z, k), cn(z, k) and dn(z, k). The Jacobian form of
the Lamé equation can be interpreted as a one-dimensional Schrödinger equation with periodic
potential V (z) = −n(n + 1)k2 sn2(z, k). In the algebraic form the Lamé equation is given by
(where the substitution x = sn2(z, k) has been made in (1.1))
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4x(x − 1)(x − k−2)
f = 0 (1.2)

and is of the Fuchsian type with four regular singular points [4].
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We consider the equation
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2 + Ax2 − Bx

4x(x − 1)
(
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)(
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)f = 0

(1.3)

with A = α + βk−2
1 , B = γ k−2

2 + δk−2
1 + λ and 0 � k2 � k1 � 1, which is a generalization of

the algebraic form of the Lamé equation (1.2). It is of Fuchsian type with five regular singular
points. The exponents are 0 and 1/2 for x = 0, 1, k−2

1 , k−2
2 and 1

2

[
1 ± (

1 + α + βk−2
1

)1/2]
for

∞. This equation is of relevance when considering fluctuations around (anti-)periodic static
solutions of (1+1)-dimensional scalar field theories with a φ6 interaction term [5].

In the past, several generalizations of the original Lamé potential were considered,
e.g. Darboux–Treibich–Verdier potentials [6, 7], which can be written by a suitable
variable transformation as Heun equations with four singular regular points [8]. Further
generalizations of Darbroux–Treibich–Verdier potentials [9] can be written by a suitable
variable transformation [10, 11] as Fuchsian equations with more than four singular points.
The additional singular points in the finite region of the complex plane are apparent [10],
which means the exponents at these points are integers. Equation (1.3) has no apparent
singular points in the finite region of the complex plane and is therefore not covered by [9–11].

We show that (1.3) can also be written as a Schrödinger equation with periodic potential.
For this purpose we introduce a generalization of the Jacobi elliptic functions. These functions
are quasi-doubly periodic but not elliptic in the strict sense, because of the appearance of cuts
in the complex plane.

We will determine all values of the free parameters (α, β, γ, δ, λ) for which quasi-doubly
periodic eigenfunctions (with the corresponding eigenvalue E) expressible as polynomials
in terms of these generalized Jacobi functions exist. This can be done by transforming the
generalized Lamé equation to the generalized Ince equation (in [1, 12] the Lamé equation has
been transformed to the Ince equation in a similar way). The five-term recurrence relations
obtained from the generalized Ince equation [13] by inserting a Fourier ansatz enables us to
get conditions for the existence of polynomial solutions.

The main result is that instead of infinitely many polynomial solutions, as in the case of
the Lamé equation, the conditions for existence of polynomial solutions in the generalized
case are so restrictive that only for a finite set of values for the parameters (α, β, γ, δ, λ) and
E polynomial solutions exist.

2. The generalized Jacobi functions

In this section, we introduce the generalized Jacobi functions and discuss some of their
properties. We consider the (pseudo-)hyperelliptic integral

u(y, k1, k2) =
∫ y

0

dt√
(1 − t2)

(
1 − k2

1 t
2
)(

1 − k2
2 t

2
) , (2.1)

where without loss of generality 0 < k2 < k1 < 1 are the moduli. The inverse function
y = s(u, k1, k2) fulfils the following differential equation:

s ′(u)2 = (1 − s2(u))
(
1 − k2

1s
2(u)

)(
1 − k2

2s
2(u)

)
. (2.2)

We define the companion functions for s(u) by (in most cases we use the abbreviated notation
s(u) ≡ s(u, k1, k2), c(u) ≡ c(u, k1, k2), etc)

c2(u) = 1 − s2(u), d2
1 (u) = 1 − k2

1s
2(u), d2

2 (u) = 1 − k2
2s

2(u). (2.3)
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Without solving the integral (2.1) explicitly, one can derive certain properties of these functions.
From (2.3) one gets

d2
i (u) − k2

i c
2(u) = 1 − k2

i , i = 1, 2; k2
1d

2
2 (u) − k2

2d
2
1 (u) = k2

1 − k2
2 . (2.4)

The first derivatives of these functions are given by

s ′(u) = c(u)d1(u)d2(u), c′(u) = −s(u)d1(u)d2(u),

d ′
1(u) = −k2

1s(u)c(u)d2(u), d ′
2(u) = −k2

2s(u)c(u)d1(u),
(2.5)

which can easily be shown by applying (2.2). The functions (2.3) with the properties (2.5) are
generalizations of the usual Jacobi elliptic functions sn(u), cn(u) and dn(u) with

sn′(u) = cn(u) dn(u), cn′(u) = −sn(u) dn(u), dn′(u) = −k2 sn(u) cn(u) (2.6)

and they reduce to them for k2 → 0.
By using (2.3) the second derivatives can be written as

s ′′(u) = −3k2
1k

2
2s

5(u) + 2
(
k2

1 + k2
2 + k2

1k
2
2

)
s3(u) − (

1 + k2
1 + k2

2

)
s(u)

c′′(u) = −3k2
1k

2
2c

5(u) − 2
(
k2

1 + k2
2 − 3k2

1k
2
2

)
c3(u) +

(−1 + 2k2
1 + 2k2

2 − 3k2
1k

2
2

)
c(u) (2.7)

d ′′
1 (u) = −3k2

2k
−2
1 d5

1 (u) − 2
(
1 + k2

2 − 3k2
2k

−2
1

)
d3

1 (u) +
(
2 − k2

1 + 2k2
2 − 3k2

2k
−2
1

)
d1(u).

Normally the inversion of a single hyperelliptic integral is problematic [14], to say the
least. Historically, this obstacle has led to the development of algebraic geometry and the
theory of theta functions [15]. We need no sophisticated methods of algebraic geometry
because (2.1) can be reduced to an elliptic integral by applying t = √

τ [16]. The functions
s(u), c(u), d1(u) and d2(u) can then be expressed in terms of the standard Jacobi elliptic
functions:

s(u, k1, k2) = sn(k′
2u, κ)

[
1 − k2

2 + k2
2 sn2(k′

2u, κ)
]−1/2

c(u, k1, k2) = k′
2 cn(k′

2u, κ)
[
1 − k2

2 cn2(k′
2u, κ)

]−1/2

d1(u, k1, k2) = (
k2

1 − k2
2

)1/2
dn(k′

2u, κ)
[
k2

1 − k2
2 dn2(k′

2u, κ)
]−1/2

d2(u, k1, k2) = (
k2

1 − k2
2

)1/2[
k2

1 − k2
2 dn2(k′

2u, κ)
]−1/2

(2.8)

with κ2 = (
k2

1 − k2
2

)/(
1 − k2

2

)
, k′

2 =
√

1 − k2
2 and 0 � k2 � k1 � 1. They have branch cuts

along (u1, u2) and (u3, u4) with

u1 = i
cn−1(k2, κ

′)
k′

2

, u2 = −u1 + 2i
K(κ ′)

k′
2

,

u3 = u1 + 2
K(κ)

k′
2

, u4 = u2 + 2
K(κ)

k′
2

(2.9)

where K(κ) is the complete elliptic integral of the first kind and κ ′ = √
1 − κ2. Now one can

see that the elementary relations (2.5) are rather hidden when using the Jacobi representation
(2.8). It is also advantageous to use (2.3)–(2.7) when working with these functions and not
representation (2.8) together with the standard identities for Jacobi functions, which can be
found in any textbook on elliptic functions [2, 16]. With this set-up algebraic manipulations
become very simple and straightforward.
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From the doubly periodic properties of the Jacobian elliptic functions one can see that
(2.8) are quasi-doubly periodic:

s

(
u +

4K(κ)

k′
2

)
= s

(
u +

2iK(κ ′)
k′

2

)
= ±s(u)

c

(
u +

4K(κ)

k′
2

)
= c

(
u +

2K(κ) + 2iK(κ ′)
k′

2

)
= ±c(u)

d1

(
u +

2K(κ)

k′
2

)
= d2

(
u +

4iK(κ ′)
k′

2

)
= ±d1(u)

d2

(
u +

2K(κ)

k′
2

)
= d2

(
u +

2iK(κ ′)
k′

2

)
= ±d1(u).

(2.10)

Here an expression such as s(u + 4K(κ)k′−1
2 ) has to be interpreted as analytic continuation of

s(u) along a path from u to u + 4K(κ)k′−1
2 . If the path avoids the cuts, the positive sign has

to be chosen on the right-hand side of (2.10). Choosing a path which crosses a cut one time,
one ends up with the negative sign. So these functions are quasi-doubly periodic, depending
on the path of analytic continuation.

3. The generalized Lamé equation and its relation to the generalized Ince equation

With the generalized Jacobi functions, defined in the last section, we can now introduce the
‘Jacobian’ form of the generalized Lamé equation (1.3). This allows a discussion of this
equation similar to the one done in [1, 12] for the standard Lamé equation.

We refer to the one-dimensional time-independent Schrödinger equation

d2f

dz2
+ V (z)f = −Ef (3.1)

with the periodic potential

V (z) = (
αk2

1k
2
2 + βk2

2

)
s4(z, k1, k2) − (

γ k2
1 + δk2

2 + λk2
1k

2
2

)
s2(z, k1, k2). (3.2)

as the generalized Lamé equation in the Jacobian form, because by substitution of x =
s2(z, k1, k2) (3.1) transforms into (1.3), which is a natural generalization of the algebraic form
of the Lamé equation (1.2). Also for k2 → 0, (3.2) reduces to the standard Lamé potential

V (z) = −γ k2
1 sn2(z, k1), (3.3)

which for γ = n(n+1) with n ∈ N has 2n+1 doubly periodic solutions, the Lamé polynomials
[1].

By the substitution of t = a(z, k1, k2), where a(z, k1, k2) is defined by

dt

dz
=

√(
1 − k2

1 sin2 t
)(

1 − k2
2 sin2 t

)
(3.4)

(this can be understood as a generalization of Jacobi’s amplitude function am(z, k)) and using

d2t

dz2
= 1

2

(
k2

1k
2
2 − k2

1 − k2
2

)
sin(2t) − 1

4
k2

1k
2
2 sin(4t), (3.5)

which follows directly from (3.4), one can transform (3.1) to the generalized Ince equation
[13]

(1 + a1 cos(2t) + a2 cos(4t))
d2f

dt2
+ (b1 sin(2t) + b2 sin(4t))

df

dt
+ (c + d1 cos(2t) + d2 cos(4t))f = 0 (3.6)
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with coefficients

a1 = k2
1 + k2

2 − k2
1k

2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

, a2 =
1
4k2

1k
2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

,

b1 = −a1, b2 = −2a2,

c = 2E − γ k2
1 +

( 3β

4 − δ
)
k2

2 +
(

3α
4 − λ

)
k2

1k
2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

,

d1 = γ k2
1 + (δ − β)k2

2 + (λ − α)k2
1k

2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

, d2 =
1
4

(
αk2

1k
2
2 + βk2

2

)
2 − k2

1 − k2
2 + 3

4k2
1k

2
2

.

(3.7)

Remark 3.1.

(i) The eigenvalue parameter E of (3.1) only appears in the coefficient c of the generalized
Ince equation.

(ii) Solutions to (3.1) with periods 2k′−1
2 K(κ) and 4k′−1

2 K(κ) correspond to solutions to (3.6)
with periods π and 2π , respectively.

4. The solutions

In the following we find all values for (α, β, γ, δ, λ) and E, for which (3.1) has polynomial
solutions in terms of (2.8). For this purpose it is advantageous to consider (3.6). Because we
are interested in periodic solutions, we can now make a Fourier expansion for the unknown
solutions. Because (3.6) has periodic coefficients with period π , by Floquet’s theorem
[12, 13] it is sufficient to consider only solutions with period π or 2π . Therefore, we
have to consider four different Fourier expansions for the unknown solutions corresponding
to even and odd functions with period π or 2π .

One ends up with five-term recurrence relations for the Fourier coefficients, which furnish
conditions on the parameters α, β, γ, δ, λ. In [13] these recurrence relations were discussed
in the context of coexistence of two linearly independent periodic solutions to (3.6).

4.1. Even functions with period π

Inserting the Fourier ansatz

f (t) =
∞∑

n=0

A2n cos(2nt) (4.1)

into (3.6) gives the following recurrence relations [13]:

− cA0 + Q1(−1)A2 + Q2(−2)A4 = 0

Q1(0)A0 + (4 − c + Q2(−1))A2 + Q1(−2)A4 + Q2(−3)A6 = 0

Q2(n − 2)A2n−4 + Q1(n − 1)A2n−2 + A2n(4n2 − c)

+ Q1(−n − 1)A2n+2 + Q2(−n − 2)A2n+4 = 0, n > 1 (4.2)

or in the matrix form


−c Q1(−1) Q2(−2) 0 0 0 · · ·
Q1(0) 4 − c + Q2(−1) Q1(−2) Q2(−3) 0 0 · · ·
Q2(0) Q1(1) 16 − c Q1(−3) Q2(−4) 0 · · ·

0 Q2(1) Q1(2) 36 − c Q1(−4) Q2(−5) · · ·
... · · · ...







A0

A2

A4

A6

...


 = 0

(4.3)
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with

Qi(µ) = 2aiµ
2 − biµ − di

2
, i = 1, 2. (4.4)

Equation (3.6) has more than one polynomial solution with period π only if the following
three equations have integral solutions for µ [13]:

Q1(µ) = Q2(µ) = Q2(µ − 1) = 0. (4.5)

If this is the case, the determinant of the infinite matrix in (4.3) separates into the product of
determinants of a finite submatrix and an infinite matrix [13]. From setting the determinant
of the finite submatrix to zero one determines the allowed values for c and from this the
eigenvalues E, see remark 3.1(i). By the identity s(z, k1, k2) = sin(a(z, k1, k2)) polynomial
solutions in sin(t) for (3.6) become polynomial solutions in s(z) for (3.1).

From the second and third conditions of (4.5) follows the relation

b2 = 2a2(2µ − 1), (4.6)

and (3.7) shows that only µ = 0 is permitted. On the other hand, in order that the first two
conditions of (4.5) are fulfilled by µ = 0, one has to set d1 = d2 = 0. This is only possible
when α = β = γ = δ = λ = 0, see (3.7). So (3.6) cannot have more than one even
polynomial solution with period π for any given values of (α, β, γ, δ, λ).

In order that only one polynomial solution for given values of (α, β, γ, δ, λ) exists, it is
necessary that only one column or row of the infinite matrix is zero. In the following we go
through all possibilities, which give a nontrivial result.

First case. We set the first row to zero:

Q1(−1) = Q2(−2) = c = 0. (4.7)

The first two equations of (4.7) reduce to

(2 − γ )k2
1 + (2 − δ + β)k2

2 + (α − λ − 2)k2
1k

2
2 = 0

(8 − α)k2
1k

2
2 − βk2

2 = 0.
(4.8)

These equations are only fulfilled for

α = 8, β = 0, γ = δ = 2, λ = 6. (4.9)

The eigenvalue is determined by the third condition of (4.7):

E = k2
1 + k2

2, (4.10)

and the eigenfunction is given by

f (z) = d1(z)d2(z), (4.11)

which can be checked by inspection.

Second case. We set the first column to zero:

Q1(0) = Q2(0) = c = 0. (4.12)

This reduces to

d1 = d2 = 0. (4.13)

So there is no nontrivial solution, see the discussion after (4.6).

Other cases. For the other columns one has the four conditions (in addition to 4n2 − c = 0)

Qi(±µ) = 0, i = 1, 2. (4.14)
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From Qi(µ) − Qi(−µ) = 0 it follows that

2biµ = 0. (4.15)

This has only a nontrivial solution for µ = 0, which is the second case considered just above.
For the other rows one must set Q1(µ) = Q1(−µ − 2) = 0 and Q2(µ − 1) =

Q2(−µ − 3) = 0. The first two conditions are only fulfilled for µ = −1, which is the
first case considered above.

So there are no further solutions.

4.2. Odd functions with period π

Insertion of the Fourier ansatz

f (t) =
∞∑

n=0

B2n sin(2nt) (4.16)

into (3.6) gives recurrence relations with the following matrix:


4 − c − Q2(−1) Q1(−2) Q2(−3) 0 0 0 · · ·
Q1(1) 16 − c Q1(−3) Q2(−4) 0 0 · · ·
Q2(1) Q1(2) 36 − c Q1(−4) Q2(−5) 0 · · ·

0 Q2(2) Q1(3) 64 − c Q1(−5) Q2(−6) · · ·
... · · · ...


 . (4.17)

By the same arguments as in the last subsection more than one polynomial solution for given
values of (α, β, γ, δ, λ) is not possible. The first column vanishes for

α = 8, β = 0, γ = δ = 6, λ = 2. (4.18)

The corresponding eigenvalue and function are given by

E = 4 + k2
1 + k2

2, f (z) = s(z)c(z). (4.19)

The first row vanishes for

α = 24, β = 0, γ = δ = λ = 12. (4.20)

The corresponding eigenvalue and function are given by

E = 4
(
1 + k2

1 + k2
2

)
, f (z) = s(z)c(z)d1(z)d2(z). (4.21)

4.3. Odd functions with period 2π

Insertion of the Fourier ansatz

f (t) =
∞∑

n=0

B2n+1 sin((2n + 1)t) (4.22)

into (3.6) gives recurrence relations with the following matrix:


2 − 2c − Q∗
1(0) Q∗

1(−1) − Q∗
2(−1) Q∗

2(−2) 0 0 0 · · ·
Q∗

1(1) − Q∗
2(0) 18 − 2c Q∗

1(−2) Q∗
2(−3) 0 0 · · ·

Q∗
2(1) Q∗

1(2) 50 − 2c Q∗
1(−3) Q∗

2(−4) 0 · · ·
0 Q∗

2(2) Q∗
1(3) 96 − 2c Q∗

1(−4) Q∗
2(−5) · · ·

... · · · ...


 .

(4.23)
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with

Q∗
i (µ) = ai(2µ − 1)2 − bi(2µ − 1) − di, i = 1, 2. (4.24)

Equation (3.6) has more than one polynomial solution with period 2π if the following
three equations have integral solutions:

Q∗
1(µ) = Q∗

2(µ) = Q∗
2(µ − 1) = 0. (4.25)

From the third equation follows the relation

b2 = 4a2(µ − 1). (4.26)

This cannot be fulfilled for our case, see (3.7). More than one odd polynomial solution with
period 2π for given values of (α, β, γ, δ, λ) is not possible.

The solution for vanishing the first column in (4.23) is given by

α = 3, β = 0, γ = δ = λ = 2, E = 1 + k2
1 + k2

2, f (z) = s(z). (4.27)

The solution for vanishing the first row in (4.23) is given by

α = 15, β = 0, γ = δ = 6, λ = 12, E = 1 + 4
(
k2

1 + k2
2

)
,

f (z) = s(z)d1(z)d2(z). (4.28)

4.4. Even functions with period 2π

Insertion of the Fourier ansatz

f (t) =
∞∑

n=0

A2n+1 cos((2n + 1)t) (4.29)

into (3.6) gives recurrence relations with following matrix:




2 − 2c − Q∗
1(0) Q∗

1(−1) + Q∗
2(−1) Q∗

2(−2) 0 0 0 · · ·
Q∗

1(1) + Q∗
2(0) 18 − 2c Q∗

1(−2) Q∗
2(−3) 0 0 · · ·

Q∗
2(1) Q∗

1(2) 50 − 2c Q∗
1(−3) Q∗

2(−4) 0 · · ·
0 Q∗

2(2) Q∗
1(3) 96 − 2c Q∗

1(−4) Q∗
2(−5) · · ·

... · · · ...


 .

(4.30)

Also here, more than one even polynomial solution with period 2π is not possible.
The solution for vanishing first column in (4.30) is given by

α = 3, β = 0, γ = δ = 2, λ = 0, E = 1, f (z) = c(z).

(4.31)

The solution for vanishing first row in (4.30) is given by

α = 15, β = 0, γ = δ = λ = 6, E = 1 + k2
1 + k2

2,

f (z) = c(z)d1(z)d2(z).
(4.32)
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Table 1. All 15 doubly periodic solutions with corresponding eigenvalues and parameters.

(α, β, γ, δ, λ) Eigenvalue Eigenfunction

(3, 0, 2, 2, 2) E = 1 + k2
1 + k2

2 f (z) = s(z)

(3, 0, 2, 2, 0) E = 1 f (z) = c(z)

(3, 0, 2, 0, 2) E = k2
1 f (z) = d1(z)

(3, 0, 0, 2, 2) E = k2
2 f (z) = d2(z)

(8, 0, 6, 6, 2) E = 4 + k2
1 + k2

2 f (z) = s(z)c(z)

(8, 0, 2, 2, 6) E = k2
1 + k2

2 f (z) = d1(z)d2(z)

(8, 0, 6, 2, 6) E = 1 + 4k1
1 + k2

2 f (z) = s(z)d1(z)

(8, 0, 2, 6, 6) E = 1 + k2
1 + 4k2

2 f (z) = s(z)d2(z)

(8, 0, 6, 2, 2) E = 1 + k2
1 f (z) = c(z)d1(z)

(8, 0, 2, 6, 2) E = 1 + k2
2 f (z) = c(z)d2(z)

(15, 0, 6, 6, 6) E = 1 + k2
1 + k2

2 f (z) = c(z)d1(z)d2(z)

(15, 0, 12, 6, 6) E = 4 + 4k2
1 + k2

2 f (z) = s(z)c(z)d1(z)

(15, 0, 6, 12, 6) E = 4 + k2
1 + 4k2

2 f (z) = s(z)c(z)d2(z)

(15, 0, 6, 6, 12) E = 1 + 4(k2
1 + k2

2) f (z) = s(z)d1(z)d2(z)

(24, 0, 12, 12, 12) E = 4(1 + k2
1 + k2

2) f (z) = s(z)c(z)d1(z)d2(z)

4.5. Further polynomial solutions

The substitution of f (z) = d1(z)g(z) into (3.1) yields

d1(z)g
′′(z) + 2d ′

1(z)g
′(z) + d ′′

1 (z)g(z) + V (z)d1(z)g(z) = −Ed1(z)g(z). (4.33)

Applying the transformation defined by (3.4) and using (2.7), (4.33) can be transformed to a
generalized Ince equation (3.6) for the unknown function g(t) with the following coefficients:

a1 = k2
1 + k2

2 − k2
1k

2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

, a2 =
1
4k2

1k
2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

b1 = −3k2
1 − k2

2 + 2k2
1k

2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

, b2 = −4a2

c = 2E − γ k2
1 +

(
3
4β − δ

)
k2

2 +
(
2 − λ + 3

4 (α − 3)
)
k2

1k
2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

d1 = (γ − 2)k2
1 + (δ − β)k2

2 + (λ − α + 1)k2
1k

2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

d2 =
1
4βk2

2 + 1
4 (α − 3)k2

1k
2
2

2 − k2
1 − k2

2 + 3
4k2

1k
2
2

.

(4.34)

Now one can perform the same steps as in sections 4.1–4.4. The additional (together with the
previously obtained) solutions can be found in table 1.

The substitution of f (z) by d2(z)g(z) into (3.1) and applying the same steps as above
only reproduces the previously obtained solutions.
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5. Expansion in s(z)

An alternative way to find the previous solutions is to substitute a formal power series in
generalized Jacobi functions, e.g.,

f (z) =
∞∑

n=0

a2n+1s
2n+1(z), (5.1)

into the generalized Lamé equation (3.1) (a similar discussion of the Lamé equation can be
found in [1]). One gets four-term recurrence relations given in the matrix form by



D(0) f (0) 0 0 0 · · ·
M1(1) D(1) f (1) 0 0 · · ·
M2(2) M1(2) D(2) f (2) 0 · · ·

0 M2(3) M1(3) D(3) f (3) · · ·
... · · · ...







a1

a3

a5

a7

...


 = 0 (5.2)

with
D(n) = E − (2n + 1)2

(
1 + k2

1 + k2
2

)
f (n) = 2(n + 1)(2n + 3)

M1(n) = (2n(2n − 1) − γ )k2
1 + (2n(2n − 1) − δ)k2

2 + (2n(2n − 1) − λ)k2
1k

2
2

M2(n) = (α − (2n − 3)(2n − 1))k2
1k

2
2 + βk2

2 .

(5.3)

The recurrence chain terminates if the following three equations have integral solutions for µ:

M1(µ) = M2(µ) = M2(µ + 1) = 0. (5.4)

M2(ni) cannot be simultaneously zero for two different integrals n1 and n2. So here one finds
no polynomial solution.

The recurrence chain also terminates if one row or column is zero. In (5.2) only for the
first column this can be done

D(0) = M1(1) = M2(2) = 0. (5.5)

This is the case for

α = 3, β = 0, γ = δ = λ = 2. (5.6)

One finds again the solution f (z) = s(z) with eigenvalue E = 1 + k2
1 + k2

2. The recurrence
relations for the other possible power series expansions can be found in the appendix.

6. Conclusion

We have shown that for the generalized Lamé equation (3.1), which in the algebraic form (1.3)
is an ordinary differential equation of Fuchsian type with five regular singular points, only
a finite number of quasi-doubly periodic solutions exist, which can be expressed in terms of
generalized Jacobi functions (see table 1).

For this we have transformed the generalized Lamé equation to the generalized Ince
equation and applied recently found [13] properties of their five-term recurrence relations.
When (3.1) is interpreted as the Schrödinger equation every eigenfunction corresponds to
a different periodic potential (3.2) with certain values of the parameters (α, β, γ, δ, λ). So
the generalized Lamé equation (3.1) is not a quasi-exactly solvable differential equation in
the sense of [3]. Rather, it ranges between quasi-exactly solvable and not exactly solvable
differential equations. Potentials where the solvability depends on the parameters are called
‘conditionally solvable potentials’ [17] and were first observed in [18].



Quasi-doubly periodic solutions to a generalized Lamé equation 7683

Appendix A. Recurrence relations for power series expansions in generalized Jacobi
functions

For completeness we list in this appendix all recurrence relations which result from inserting
several formal power series in s(z), c(z), d1(z) and d2(z) into the generalized Lamé equation
(3.1). All these power series expansions of the unknown eigenfunctions of the generalized
Lamé equation (3.1) result in a recurrence matrix of the following structure:



D(0) f (0) 0 0 0 · · ·
M1(1) D(1) f (1) 0 0 · · ·
M2(2) M1(2) D(2) f (2) 0 · · ·

0 M2(3) M1(3) D(3) f (3) · · ·
... · · · ...


 , (A.1)

which was discussed in section 5. With this at hand one can also find in principle eigenfunctions
of (3.1) which are only expressible as infinite series in the generalized Jacobi functions.

Appendix A.1

Insertion of the ansatz

f (z) =
∞∑

n=0

a2ns
2n(z) (A.2)

into (3.1) gives the following matrix elements:

D(n) = E − 4n2
(
1 + k2

1 + k2
2

)
f (n) = 2(n + 1)(2n + 1)

M1(n) = 2(n − 1)(2n − 1)
(
k2

1 + k2
2 + k2

1k
2
2

) − (
γ k2

1 + δk2
2 + λk2

1k
2
2

)
M2(n) = (α − 4(n − 1)(n − 2))k2

1k
2
2 + βk2

2 .

(A.3)

Appendix A.2

The ansatz

f (z) = c(z)

∞∑
n=0

a2ns
2n(z) (A.4)

gives a recurrence matrix with the following entries:

D(n) = E − (2n + 1)2 − 4n2
(
k2

1 + k2
2

)
f (n) = 2(n + 1)(2n + 1)

M1(n) = (2 + 2(n − 1)(2n + 1) − γ )k2
1 + (2 + 2(n − 1)(2n + 1) − δ)k2

2

+ (2(2n − 1)(n − 1) − λ)k2
1k

2
2

M2(n) = (α − 3 − 4n(n − 2))k2
1k

2
2 + βk2

2

(A.5)

Appendix A.3

The ansatz

f (z) = c(z)

∞∑
n=0

a2n+1s
2n+1(z) (A.6)
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gives

D(n) = E − 4(n + 1)2 − (2n + 1)2
(
k2

1 + k2
2

)
f (n) = 2(n + 1)(2n + 3)

M1(n) = (2 + 2(2n − 1)(n + 1) − γ )k2
1 + (2 + 2(2n − 1)(n + 1) − δ)k2

2

+ (2n(2n − 1) − λ)k2
1k

2
2

M2(n) = (α − 3 − (2n − 3)(2n + 1))k2
1k

2
2 + βk2

2 .

(A.7)

Appendix A.4

The ansatz

f (z) = d1(z)

∞∑
n=0

a2ns
2n(z) (A.8)

gives

D(n) = E − (2n + 1)2k2
1 − 4n2

(
1 + k2

2

)
f (n) = 2(n + 1)(2n + 1)

M1(n) = (2 + 2(n − 1)(2n + 1) − γ )k2
1 + (2(n − 1)(2n − 1) − δ)k2

2

+ (2 + 2(n − 1)(2n + 1) − λ)k2
1k

2
2

M2(n) = (α − 3 − 4n(n − 2))k2
1k

2
1 + βk2

2 .

(A.9)

Appendix A.5

The ansatz

f (z) = d1(z)

∞∑
n=0

a2n+1s
2n+1(z) (A.10)

gives

D(n) = E − 4(n + 1)2k2
1 − (2n + 1)2

(
1 + k2

2

)
f (n) = 2(n + 1)(2n + 3)

M1(n) = (2 + 2(2n − 1)(n + 1))k2
1 + (2n(2n − 1) − δ)k2

2

+ (2 + 2(2n − 1)(n + 1) − λ)k2
1k

2
2

M2(n) = (α − 3 − (2n − 3)(2n + 1))k2
1k

2
2 + βk2

2 .

(A.11)

Appendix A.6

The ansatz

f (z) = c(z)d1(z)

∞∑
n=0

a2ns
2n(z) (A.12)

gives

D(n) = E − (2n + 1)2(1 + k2
1

) − 4n2k2
2

f (n) = 2(n + 1)(2n + 1)

M1(n) = (6 + 2(n − 1)(2n + 3) − γ )k2
1 + (2 + 2(n − 1)(2n + 1) − δ)k2

2

+ (2 + 2(n − 1)(2n + 1) − λ)k2
1k

2
2

M2(n) = (α − 8 − 4(n − 2)(n + 2))k2
1k

2
2 + βk2

2 .

(A.13)
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Appendix A.7

The ansatz

f (z) = c(z)d1(z)

∞∑
n=0

a2n+1s
2n+1(z) (A.14)

gives

D(n) = E − 4(n + 1)2
(
1 + k2

1

) − (2n + 1)2k2
2

f (n) = 2(n + 1)(2n + 3)

M1(n) = (6 + 2(2n − 1)(n + 2) − γ )k2
1 + (2 + 2(2n − 1)(n + 1) − δ)k2

2

+ (2 + 2(2n − 1)(n + 1) − λ)k2
1k

2
2

M2(n) = (α − 8 − (2n − 3)(2n + 3))k2
1k

2
2 + βk2

2 .

(A.15)

Appendix A.8

The ansatz

f (z) = d1(z)d2(z)

∞∑
n=0

a2ns
2n(z) (A.16)

gives

D(n) = E − (2n + 1)2
(
k2

1 + k2
2

) − 4n2

f (n) = 2(n + 1)(2n + 1)

M1(n) = (2 + 2(n − 1)(2n + 1) − γ )k2
1 + (2 + 2(n − 1)(2n + 1) − δ)k2

2

+ (6 + 2(n − 1)(2n − 3) − λ)k2
1k

2
2

M2(n) = (α − 8 − 4n(n − 2))k2
1k

2
2 + βk2

2 .

(A.17)

Appendix A.9

The ansatz

f (z) = d1(z)d2(z)

∞∑
n=0

a2n+1s
2n+1(z) (A.18)

gives

D(n) = E − 4(n + 1)2
(
k2

1 + k2
2

) − (2n + 1)2

f (n) = 2(n + 1)(2n + 3)

M1(n) = (2 + 2(n + 1)(2n − 1) − γ )k2
1 + (2 + 2(n + 1)(2n − 1) − δ)k2

2

+ (6 + 2(n + 2)(2n − 1) − λ)k2
1k

2
2

M2(n) = (α − 8 + (2n − 3)(2n + 3))k2
1k

2
2 + βk2

2 .

(A.19)

Appendix A.10

The ansatz

f (z) = c(z)d1(z)d2(z)

∞∑
n=0

a2ns
2n(z) (A.20)
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gives

D(n) = E − (2n + 1)2
(
1 + k2

1 + k2
2

)
f (n) = 2(n + 1)(2n + 1)

M1(n) = (6 + 2(n − 1)(2n + 3) − γ )k2
1 + (6 + 2(n − 1)(2n + 3) − δ)k2

2

+ (6 + 2(n − 1)(2n + 3) − λ)k2
1k

2
2

M2(n) = (α − 15 − 4(n − 2)(n + 2))k2
1k

2
2 + βk2

2 .

(A.21)

Appendix A.11

The ansatz

f (z) = c(z)d1(z)d2(z)

∞∑
n=0

a2n+1s
2n+1(z) (A.22)

gives

D(n) = E − 4(n + 1)2(1 + k2
1 + k2

2

)
f (n) = 2(n + 1)(2n + 3)

M1(n) = (6 + 2(2n − 1)(n + 2) − γ )k2
1 + (6 + 2(2n − 1)(n + 2) − δ)k2

2

+ (6 + 2(2n − 1)(n + 2) − λ)k2
1k

2
2

M2(n) = (α − 15 − (2n − 3)(2n + 5))k2
1k

2
2 + βk2

2 .

(A.23)
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